Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 49(4): 1298-1310, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34651227

RESUMO

PURPOSE: This study aimed to develop a novel analytic approach based on 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography ([18F]FDG PET/CT) radiomic signature (RS) and International Prognostic Index (IPI) to predict the progression-free survival (PFS) and overall survival (OS) of patients with diffuse large B-cell lymphoma (DLBCL). METHODS: We retrospectively enrolled 152 DLBCL patients and divided them into a training cohort (n = 100) and a validation cohort (n = 52). A total of 1245 radiomic features were extracted from the total metabolic tumor volume (TMTV) and the metabolic bulk volume (MBV) of pre-treatment PET/CT images. The least absolute shrinkage and selection operator (LASSO) algorithm was applied to develop the RS. Cox regression analysis was used to construct hybrid nomograms based on different RS and clinical variables. The performances of hybrid nomograms were evaluated using the time-dependent receiver operator characteristic (ROC) curve and the Hosmer-Lemeshow test. The clinical utilities of prediction nomograms were determined via decision curve analysis. The predictive efficiency of different RS, clinical variables, and hybrid nomograms was compared. RESULTS: The RS and IPI were identified as independent predictors of PFS and OS, and were selected to construct hybrid nomograms. Both TMTV- and MBV-based hybrid nomograms had significantly higher values of area under the curve (AUC) than IPI in training and validation cohorts (all P < 0.05), while no significant difference was found between TMTV- and MBV-based hybrid nomograms (P > 0.05). The Hosmer-Lemeshow test showed that both TMTV- and MBV-based hybrid nomograms calibrated well in the training and validation cohorts (all P > 0.05). Decision curve analysis indicated that hybrid nomograms had higher net benefits than IPI. CONCLUSION: The hybrid nomograms combining RS with IPI could significantly improve survival prediction in DLBCL. Radiomic analysis on MBV may serve as a potential approach for prognosis assessment in DLBCL. TRIAL REGISTRATION: NCT04317313. Registered March 16, 2020. Public site: https://clinicaltrials.gov/ct2/show/NCT04317313.


Assuntos
Fluordesoxiglucose F18 , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Prognóstico , Estudos Retrospectivos
2.
Front Cell Dev Biol ; 9: 619549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748108

RESUMO

The aim of any surgical resection for pancreatic ductal adenocarcinoma (PDAC) is to achieve tumor-free margins (R0). R0 margins give rise to better outcomes than do positive margins (R1). Nevertheless, postoperative morbidity after R0 resection remains high and prognostic gene signature predicting recurrence risk of patients in this subgroup is blank. Our study aimed to develop a DNA replication-related gene signature to stratify the R0-treated PDAC patients with various recurrence risks. We conducted Cox regression analysis and the LASSO algorithm on 273 DNA replication-related genes and eventually constructed a 7-gene signature. The predictive capability and clinical feasibility of this risk model were assessed in both training and external validation sets. Pathway enrichment analysis showed that the signature was closely related to cell cycle, DNA replication, and DNA repair. These findings may shed light on the identification of novel biomarkers and therapeutic targets for PDAC.

4.
Eur J Nucl Med Mol Imaging ; 48(8): 2476-2485, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33420912

RESUMO

PURPOSE: Epilepsy is one of the most disabling neurological disorders, which affects all age groups and often results in severe consequences. Since misdiagnoses are common, many pediatric patients fail to receive the correct treatment. Recently, 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging has been used for the evaluation of pediatric epilepsy. However, the epileptic focus is very difficult to be identified by visual assessment since it may present either hypo- or hyper-metabolic abnormality with unclear boundary. This study aimed to develop a novel symmetricity-driven deep learning framework of PET imaging for the identification of epileptic foci in pediatric patients with temporal lobe epilepsy (TLE). METHODS: We retrospectively included 201 pediatric patients with TLE and 24 age-matched controls who underwent 18F-FDG PET-CT studies. 18F-FDG PET images were quantitatively investigated using 386 symmetricity features, and a pair-of-cube (PoC)-based Siamese convolutional neural network (CNN) was proposed for precise localization of epileptic focus, and then metabolic abnormality level of the predicted focus was calculated automatically by asymmetric index (AI). Performances of the proposed framework were compared with visual assessment, statistical parametric mapping (SPM) software, and Jensen-Shannon divergence-based logistic regression (JS-LR) analysis. RESULTS: The proposed deep learning framework could detect the epileptic foci accurately with the dice coefficient of 0.51, which was significantly higher than that of SPM (0.24, P < 0.01) and significantly (or marginally) higher than that of visual assessment (0.31-0.44, P = 0.005-0.27). The area under the curve (AUC) of the PoC classification was higher than that of the JS-LR (0.93 vs. 0.72). The metabolic level detection accuracy of the proposed method was significantly higher than that of visual assessment blinded or unblinded to clinical information (90% vs. 56% or 68%, P < 0.01). CONCLUSION: The proposed deep learning framework for 18F-FDG PET imaging could identify epileptic foci accurately and efficiently, which might be applied as a computer-assisted approach for the future diagnosis of epilepsy patients. TRIAL REGISTRATION: NCT04169581. Registered November 13, 2019 Public site: https://clinicaltrials.gov/ct2/show/NCT04169581.


Assuntos
Aprendizado Profundo , Epilepsia do Lobo Temporal , Criança , Epilepsia do Lobo Temporal/diagnóstico por imagem , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos
5.
Front Oncol ; 10: 616952, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33665167

RESUMO

Regulated necrosis is an emerging type of cell death independent of caspase. Recently, with increasing findings of regulated necrosis in the field of biochemistry and genetics, the underlying molecular mechanisms and signaling pathways of regulated necrosis are gradually understood. Nowadays, there are several modes of regulated necrosis that are tightly related to cancer initiation and development, including necroptosis, ferroptosis, parthanatos, pyroptosis, and so on. What's more, accumulating evidence shows that various compounds can exhibit the anti-cancer effect via inducing regulated necrosis in cancer cells, which indicates that caspase-independent regulated necrosis pathways are potential targets in cancer management. In this review, we expand the molecular mechanisms as well as signaling pathways of multiple modes of regulated necrosis. We also elaborate on the roles they play in tumorigenesis and discuss how each of the regulated necrosis pathways could be therapeutically targeted.

6.
Front Med ; 13(5): 602-609, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31321611

RESUMO

Panic disorder (PD) is an acute paroxysmal anxiety disorder with poorly understood pathophysiology. The dorsal periaqueductal gray (dPAG) is involved in the genesis of PD. However, the downstream neurofunctional changes of the dPAG during panic attacks have yet to be evaluated in vivo. In this study, optogenetic stimulation to the dPAG was performed to induce panic-like behaviors, and in vivo positron emission tomography (PET) imaging with 18F-flurodeoxyglucose (18F-FDG) was conducted to evaluate neurofunctional changes before and after the optogenetic stimulation. Compared with the baseline, post-optogenetic stimulation PET imaging demonstrated that the glucose metabolism significantly increased (P < 0.001) in dPAG, the cuneiform nucleus, the cerebellar lobule, the cingulate cortex, the alveus of the hippocampus, the primary visual cortex, the septohypothalamic nucleus, and the retrosplenial granular cortex but significantly decreased (P < 0.001) in the basal ganglia, the frontal cortex, the forceps minor corpus callosum, the primary somatosensory cortex, the primary motor cortex, the secondary visual cortex, and the dorsal lateral geniculate nucleus. Taken together, these data indicated that in vivo PET imaging can successfully detect downstream neurofunctional changes involved in the panic attacks after optogenetic stimulation to the dPAG.


Assuntos
Ansiedade de Separação/complicações , Transtorno de Pânico/etiologia , Substância Cinzenta Periaquedutal/diagnóstico por imagem , Substância Cinzenta Periaquedutal/fisiopatologia , Animais , Masculino , Optogenética , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...